-8k^2=-1784

Simple and best practice solution for -8k^2=-1784 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8k^2=-1784 equation:



-8k^2=-1784
We move all terms to the left:
-8k^2-(-1784)=0
We add all the numbers together, and all the variables
-8k^2+1784=0
a = -8; b = 0; c = +1784;
Δ = b2-4ac
Δ = 02-4·(-8)·1784
Δ = 57088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{57088}=\sqrt{256*223}=\sqrt{256}*\sqrt{223}=16\sqrt{223}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{223}}{2*-8}=\frac{0-16\sqrt{223}}{-16} =-\frac{16\sqrt{223}}{-16} =-\frac{\sqrt{223}}{-1} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{223}}{2*-8}=\frac{0+16\sqrt{223}}{-16} =\frac{16\sqrt{223}}{-16} =\frac{\sqrt{223}}{-1} $

See similar equations:

| |2v-2|=|2v-9| | | 8-3x-12=2x | | 18=3(3x-60 | | y^2+2=14 | | 8x^2-32x-165=0 | | -10+8x=2-12x | | -85=6(n-6)-1 | | Y=3/8x+5 | | 8(x-5)=8+40 | | 38=8x-10+5x-4 | | h^2-6=18 | | 6/8y-5y=-2 | | 1/4x-1/4=1/8x | | -8a=24 | | (8x+16)=(84) | | 50w=1,050 | | 16x^2-64x-330=0 | | 10=2x^2-x | | 10=-1/2*(1)+b | | -4=|x-3| | | 8x+11x=14 | | 4y-3.2×=6 | | -1/7w-9/5=-3/2 | | (3)^x=(x)^2 | | 10=-(1/2)*(1)+b | | -16-7(a+3)=23-2a | | 8m^2=32 | | 0=4x^2-24x-30 | | (x/7)+(x/8)=(9/7) | | X-2/4=5/4x-x | | 6x-4/2=(3x-3) | | 6-8b=-5b-4b |

Equations solver categories